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We investigate the space and time behavior of spontaneous thermohydrodynamic fluctuations
in a simple fluid modeled by a lattice-gas automaton and develop the statistical-mechanical theory
of thermal lattice gases to compute the dynamical structure factor, i.e., the power spectrum of the
density correlation function. A comparative analysis of the theoretical predictions with our lattice
gas simulations is presented. The main results are (i) the spectral function of the lattice-gas fluctu-
ations is fully compatible with the spectrum obtained from experimental measurements performed
in real fluids; (ii) in the long-wavelength limit, the correlations of lattice-gas fluctuations are well
described by the Landau-Placzek theory; (iii) at short wavelengths and/or at low densities, good
agreement is obtained between the lattice-gas simulation results and the Boltzmann theory. These
results provide solid support to the validity of the thermal-lattice-gas automaton as a consistent

model system for real fluids.

PACS number(s): 05.20.Dd, 05.50.+q, 05.60.+w

I. MOTIVATION

A fluid at global equilibrium can be viewed as a reser-
voir of excitations triggered by spontaneous fluctuations
which disturb temporarily the system from local equi-
librium. These excitations extend over a broad range
of wavelengths and frequencies from the hydrodynamic
scale down to the range of the intermolecular poten-
tial. Nonintrusive scattering techniques are used to
probe these fluctuations at the molecular level (neutron-
scattering spectroscopy) and at the level of collective ex-
citations (light-scattering spectroscopy). The quantity
measured by these scattering methods is the power spec-
trum of density fluctuations, i.e., the dynamic structure
factor S(k,w) which is the space and time Fourier trans-
form of the correlation function of the density fluctua-
tions. The spectral function S(k,w) is important be-
cause it provides insight in the dynamical behavior of
spontaneous fluctuations [1] or forced fluctuations in non-
equilibrium systems. Whereas the fluctuations extend
continuously from the molecular level to the hydrody-
namic scale, there are experimental and theoretical limi-
tations to the ranges where they can be probed and com-
puted. Indeed no theory provides a fully explicit analyt-
ical description of space-time dynamics establishing the
bridge between kinetic theory and hydrodynamic theory.
Scattering techniques have a limited range of wavelengths
over which fluctuation correlations can be probed. An
important gap remains between the molecular level (neu-

1063-651X/93/48(4)/2655(14)/806.00 48

tron scattering) and the hydrodynamic scale (light scat-
tering) which will eventually be filled by modern short-
wavelength laser-light spectroscopy. Numerical compu-
tational techniques can in principle realize molecular-
dynamics simulations over the whole desired range, but
computation time and memory requirements restrict the
applicability of the method in practice to systems with a
number of particles not exceeding 10° [2]. An interesting
alternative is provided by lattice-gas automata both from
the computational and from the theoretical point of view
[3,4].

By constructing a model system with point particles,
undergoing displacements on a regular lattice in discrete
time steps, and by representing collisional processes by
configurational transitions on lattice nodes, one obtains
a considerable gain in computational efficiency so that
fluid systems with several millions of particles are com-
monly implemented. On the theoretical side, the reward
can also be appreciated when one views the lattice gas as
a simplified version of the hard-sphere gas. Starting from
exact microdynamical equations, statistical-mechanical
computations can be conducted rather straightforwardly
in a logical fashion with well controlled assumptions to
bypass the many-body problem. Obviously the question
must be raised as to the validity of the lattice gas au-
tomaton to represent actual fluids. Here we restrict our
concern to the dynamical structure factor for a fluid sys-
tem at global equilibrium. (Nonequilibrium systems—
in particular hydrodynamical flows—are discussed else-
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where [3].) We shall consider the lattice-gas automa-
ton as a bona fide statistical-mechanical model with ex-
tremely simplified dynamics; it can be considered a fur-
ther simplification of the hard-sphere gas. We may fur-
ther argue that the lattice-gas model exhibits two impor-
tant features.

(i) It possesses a large number of degrees of freedom.

(ii) Its Boolean microscopic nature combined with
stochastic microdynamics results in intrinsic spontaneous
fluctuations.

The question then is whether these fluctuations cap-
ture the essentials of actual fluctuations in real fluids. A
qualitative answer is provided by the results of Grosfils,
Boon, and Lallemand [5], who constructed a thermal-
lattice-gas automaton where the spectrum of sponta-
neous fluctuations is compatible with the spectrum ob-
served in real fluids. The purpose of the present paper is
to present a detailed analysis of the approach both from
the theoretical point of view and from the point of view
of microscopic numerical experiments.

The paper is organized as follows. We first present
in Sec. II the lattice-gas Boltzmann theory from where
we compute the dynamical structure factor for a lattice-
gas automaton with nontrivial energy conservation. The
explicit expression of S(k,w) for the lattice-gas automa-
ton in the hydrodynamic limit is obtained in Sec. III
where we recover the Landau-Placzek result [6]. As it
turns out, the concepts of generalized hydrodynamics
with wave-number-dependent sound-speed and transport
coefficients are essential to describe the observed dynamic
structure function. For that purpose these quantities are
calculated from the lattice Boltzmann equation in Sec.
IV. We then describe the multispeed lattice-gas automa-
ton that is used for the microscopic simulations. The
most important quantity measured is the spectrum of
spontaneous fluctuations S(k,w), described in Sec. V.
Measurements are performed over a wide range of wave-
lengths (from the microscopic scale up to one-half of the
system size). We present a quantitative analysis and
comparison of the simulation results and the theoreti-
cal predictions obtained from the lattice-gas Boltzmann
equation and the Landau-Placzek theory. The latter de-
scribes the lattice-gas behavior quite accurately in the
hydrodynamic regime. The Boltzmann theory not only
contains the Landau-Placzek theory as the limiting the-
ory at long wavelengths, it also gives excellent agreement
down to rather short wavelengths where generalized hy-
drodynamic effects become important. We conclude with
some comments.

II. DYNAMIC STRUCTURE FUNCTION

The dynamic structure factor is defined as the double
Fourier transform with respect to space and time of the
van Hove function G(r,t) [1], the correlation function of
density fluctuations dp(r, t) around the equilibrium state,
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pS(k,w) =" D e (5p(r, |t])6p(0,0))

= D eV (K, |t))dp" (k,0)),  (2.1)

where h(k) = > exp(—ik - r)h(r) denotes a spatial
Fourier transform, and V = L? is the number of nodes
in the d dimensional lattice. In a lattice-gas automaton
(LGA), r and t are discrete, and p is the average num-
ber of particles per node (0 < p < b, where b is the
number of channels per node). In case of deterministic
and invertible dynamics, time-reversal invariance of the
microscopic equations of motion guarantees that the van
Hove function is even in time. In case of determinis-
tic but noninvertible, or stochastic dynamics S(k,w) is
simply defined through (2.1), as twice the half-sided tem-
poral Fourier cosine transform, where the time evolution
is defined for positive time argument only. The density
fluctuation can be expressed in terms of the fluctuations
of the channel occupation numbers, n; (¢ =0,...,b—1),

Sp(r,t) = ZSni(r,t) =Y [ni(r,t) — (ni(r,1))] . (2.2)

i

The average is taken over an equilibrium ensemble and
has the form of the usual Fermi distribution [4],

fi = (il 1)) =[1 4 emetPere

- [1 + exp{— Xn: bnan(c; )}] _1,

where £, = 1¢2

3¢; is the kinetic energy of a particle in
velocity channel ¢. The Lagrange multipliers b, =
{a,—B,7v}, conjugate to the summational invariants
an(c;) = {1,€;,c;}, are the chemical potential «, the in-
verse temperature 3, and the parameter -+, conjugate to
the flow velocity, u = % >, cifi. In the standard ather-
mal LGA’s, energy is not conserved at all or trivially
conserved, and the Lagrange multiplier 8 in (2.3) must
be set equal to zero. The stationary distribution in basic
equilibrium, f; = f = p/b, is then independent of the par-
ticle’s energy. In this paper we consider thermal LGA’s
(B # 0) and we restrict ourselves to basic equilibrium,
where the system is macroscopically at rest (u =« = 0).
The most important quantity in the nonequilibrium
description of fluids and LGA’s is the kinetic propagator
or Green’s function,

(2.3)

Ly; (k7 t)ﬁj = (‘Snl (k7 t)én; (k7 0»7 (2'4)
where 6n;(k,t) is the spatial Fourier transform of
on;i(r,t). Its equal-time value is
i (k,0) = 6y, (2.5)
and k; = (0f;/0a)g = fi(1 — f;) is the equal-time corre-
lation function of the dn;’s. The static structure factor is

the Fourier transform of the equal-time density-density
correlation function,
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(2.6)

= ZI‘”(k, O)K/j = ZI{]‘,
1,5 J

as obtained from (2.2) and (2.5).

In the present paper the kinetic propagator will be cal-
culated in the mean-field or Boltzmann approximation.
The lattice-gas Boltzmann equation reads [7,8]

ni(r +c;,t +1) = ni(r,t) + L (n). (2.7)

To study fluctuations the collision term I; can be ex-

panded around the stationary distribution f in Eq. (2.3)
as

L(f +6n) =

)+ > Qi;dn; +0[(6n)%],  (2.8)

J

where f satisfies I;(f) = 0, and the b x b matrix € is the
linearized Boltzmann collision operator. Combination of
(2.7) and (2.8) and subsequent Fourier transformation
yields to first order in the fluctuation dn;,

= €T (8 + Qj) I (K, t).

J

ni(k,t+ 1 (2.9)

Equation (2.9) can be solved by iteration. Substituting
this solution in (2.4) gives with the help of (2.5),

Tyl ) = (2.10)
which is valid for t > 0. Here [exp(—tk - c)];; =
d;5 exp(—tk - ¢;) is a diagonal matrix. Summing over
(¢,j) and taking the temporal Fourier transform yields
the dynamic structure factor (2.1),

[ @+ @),

pS(k,w) = 2ReF'(k,w), (2.11)

where Re denotes the real part and F(k,w) is defined as

F(k,w) =Y |3 e ™™y (k,t) + 1Ty;(k,0)
i,j Lt=1
1-Q)7 '+ 1}k, (2.12)

— Z{[eiw+ik~c _
2%

In obtaining the second equality we have used the relation
2=, Qujk; = 0 (see below).

This is the final expression for the dynamic structure
factor in Boltzmann approximation. The inverse matrix
in (2.12) is b dimensional and depends on w and k. In
general, it is too complicated to be inverted analytically
and we have used (2.12) for a direct numerical evalua-
tion for the LGA model described in Sec. IV. When one
is interested in the dynamic structure factor S(k,w) in
the hydrodynamic regime, i.e., when the system is probed
with a wavelength large compared to the interparticle dis-
tance and large compared to the mean free path between
collisions, then the method of Landau and Placzek [9]
allows us to calculate S(k,w) analytically, from (2.12) in
the limit of small spatial and temporal variations (k — 0,
w — 0). The hydrodynamic limit of the dynamic struc-
ture factor is computed and discussed in Sec. III.
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Before closing the present section, we observe that we
have used in the above derivation one of the right eigen-
functions of Q;; with zero eigenvalue, i.e.,

df;
2 Q,J db] Z Qijnjan(cj ) = 0, (213)
J
with f; given by (2.3) and
an(ci) = {1,¢c;,8; = 32} (2.14)

The relation (2.13) follows directly from the observation
that I;(f(bn)) = O for a stationary distribution with La-
grange multipliers b,,, and also with b,, +8b,,. In the next
section we also need the left eigenvectors with zero eigen-
value of the nonsymmetric matrix Q. They follow from
the conservation laws for the total number of particles,
the total energy, and the total momentum, i.e.,

Zan(cl i(n) =0 and Zan ci)

The quantities a,(c;) in (2.14) are the so-called colli-
sional invariants.

Q; =0. (2.15)

III. LANDAU-PLACZEK THEORY

In the hydrodynamic regime, i.e., the domain of small
values of k and w, perturbation methods can be used to
evaluate S(k,w) in (2.12). A convenient starting point is
the Boltzmann propagator (2.10) which is the tth power
of the nonsymmetric matrix e~ (1 + ). In matrix
notation its right eigenvectors are defined through

e M1 + Q)[9u (k) = e 0, (K)),

where the b vector |1,) has components [¢,); = k¥, (c;)
with ¢ = 0,1,2,...,b — 1. To study the left eigenvectors
and the transposed matrix 2 we introduce the thermal
scalar product,

>4t

where the weight x; depends on the temperature. Note
that the scalar product does not imply complex conjuga-
tion. It has been shown in Refs. [7,10] that the matrix

product Q« is symmetric, i.e., (QK,) = kQ = Qk for any
model satisfying detailed balance, where k;; = k;6;; is
considered as a diagonal matrix. This implies the sym-

metry,
= Z Alﬂ” K]'B
%,

The model to be discussed in Sec. IV is a detailed-balance
model.

Next we consider the eigenvectors. In (2.13) we have
already determined the zero eigenvectors a,(c) of Q
which represent the right eigenvectors v, in the long-
wavelength limit (k — 0). Denoting the eigenvectors as

(3.1)

(A|B) = (ci)ki, (3.2)

(A]92]B) = (B|?|4) (3.3)
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lan)i = {|p)i;le)i, & )i} = ri{l, 3¢i, ci},

the eigenvalue equations (2.13) and (2.15) can be written
as

(3.4)

Qla,) =0, (an|Q=0. (3.5)

The left eigenvectors, ($,|, defined through the relation,

(bu(k)le™™ (1 + Q) = =0V (g, (k)| (3.6)

differ from the right eigenvectors [¢,(k)). By taking
the transpose of (3.6), using the symmetry (3.3), and
comparing it with (3.1) we deduce,

b (k) = e_ik'c"/’#(k)/Mu(k)’

where M, (k) is a normalization constant. The right or
the left eigenvectors are not orthogonal, but form a com-
plete biorthonormal set, satisfying,

D ) (dul =1

(3.7)

(3.8)
(Dula) = (Pule™C1Pa) /My = rp.
With the help of these eigenfunctions we make the follow-

ing spectral decomposition of the Boltzmann propagator
(2.10),

Lk, t)e =Y [ (k))e (g, (k)| (3.9)

valid for ¢t > 0. The explicit form of the eigenvectors and
eigenvalues is considered in Appendix A. In the notation
introduced in (3.1) and (3.4), the structure factor (2.11)
or the closely related function F'(k,w) in (2.12) can be
written as

F(k,w) = (p| [e*F¥° —1-0] " + Lp)

= Y {elvu)(Bule) {[e 7 — 17" + 1}

=) NuDu(w), (3.10)

where (3.9) has been substituted in (2.12). For later con-
venience we have introduced

N# <P|'¢u><¢ulp>a

Il

(3.11)
1

Dy(w) = piv—za (k) _ ]

+ 1.

The integrated intensity at a fized k value is given by the
sum rule,

dw S(k
/ 2m 5 Z(plp)

Here we have used the relation pS(k) = (p|p), as im-
plied by (2.6), (3.4), and (3.5), and we have evaluated

(3.12)

the integral,

Re /1r dwD,(w)

— Re/ dw {[eiw—zu(k) _ 1]—1 + %} =, (3‘13)

by contour integration. Each mode contributes a spec-
tral line in (3.12), and their total weight factors add up
to unity. However, at finite k values the “weight fac-
tors” are not necessarily positive, because the matrices
are complex, but not Hermitian.

The dominant contributions come from small values of
the denominators, corresponding to the hydrodynamic
regime where k is small and w is either O(k) or O(k?).
They are given by the hydrodynamic modes: shear mode
(p =1), heat mode (# = T), and two sound modes
(0 = 0 = £). To dominant order as k — 0, the right
eigenmodes and the eigenvalues are given by

Y1) = lgi); zy (k) = —vk?,
lvr) = |s); zr(k) = —Drk?, (3.14)
[Yo) = |p+0csqt); 2zo(k) = —iock — Tk2.

To the same dominant order, the left eigenmodes are
given by

Bu(c) = Yu(c)/(Yultbu),

on account of (3.7) and (3.8). The eigenvectors contain
the transverse (L) and longitudinal (!) components of the
momentum ﬂuctuation g(c) = ¢, the entropy fluctuation

s(c) = 1c* — cZ, and the pressure fluctuation p(c) = 1c?,
as derlved in Appendlx A. The eigenvalues contain the
speed of sound ¢, and the transport coefficients: kine-
matic viscosity v, heat diffusivity Dz, and sound damp-
ing constant I', with explicit expressions given in Ap-
pendix A in Boltzmann approximation.

Apart from the slow hydrodynamic modes with
z,(k) — 0, there exist in the long-wavelength limit also
fast kinetic modes with Rez,(0) < 0, that lead to terms
in (3.9) with exponential decay. Their contribution to
(3.10) is negligible when compared to the hydrodynamic
modes. In the subsequent analysis we restrict therefore
the summation in (3.10) to the hydrodynamic modes (in-
dicated below by an asterisk on the summation sign).
Furthermore we focus on the frequency range in the spec-
tral density S(k,w), where w is linear in k (Brillouin
lines). To carry out a consistent perturbation expansion
of F(k,w) in (3.10) for small k, we keep w/k constant,
and expand F'(k,w) in powers of k, keeping terms up to
O(k?). The dominant nonvanishing contribution [O(k)]
yields the line shifts, and the next contribution [O(k?2)]
yields the line shape (width and asymmetry).

We first deduce from (3.10) that

=3 "W fiw — 2, ()]

(3.15)

F(k,w) [1+O(k%)], (3.16)

where we used the relation (e* —1)"*+ 1 ~ 271 + O(x),
valid for small z. The coefficients N, in (3.11) are eval-
vated in Appendix B for small k, and yield
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k cz _ (plp){rlp)
N,=_<P'P>{1+Z [r+ _1DT}}+0k2, =% , 3.18
o {1+ 2P - ) (k?) v= = 20 (3.18)
(3.17) with ¢, and cr, respectively, the adiabatic and isother-
mal speed of sound, for the thermal lattice gas. The
Nt = (p|p) (7__1) + O(k?). identification of the quantities (3.17) in terms of thermo-
dynamic derivatives and transport coefficients is shown
in Appendix A.
Combination of (3.10), (3.16), and (3.17) yields the
dynamic structure factor in the Landau-Placzek approx-
We have further introduced the ratio imation [6],
J
S(k,w) y-—1 2Drk? k2 k csk + w)
- T+ (y-1)D ]— .
5(k) 5 ) @ 1 (Drk?)? Z (@ £ k)% 1 (Th2)? [ +( T e ; (@ £ cuk)? + (Tk2)2

For small k values and w ~ O(k) this expression is consis-
tent to terms of relative order O(k?) excluded. The scat-
tering function has the standard form as obtained from
the linearized hydrodynamic equations [6]. The first two
terms in (3.19) represent three symmetric Lorentzians.
The first one is the Rayleigh peak with a width D7k2 and
the other two Doppler shifted (csk) lines are the Bril-
louin peaks with a width I'k?. The last terms in (3.19)
describe asymmetric contributions to the Brillouin lines
(there are no asymmetric corrections for the Rayleigh
line). On the relevant scale w ~ O(k), the Brillouin
shift of O(k) is the dominant feature that determines
the structure of S(k,w). The line shape of the Brillouin
line is determined by the linewidth and the asymmetry
terms, which are of relative order O(k) with respect to
the shift. The power spectrum (3.19) consisting of the
Rayleigh line and the asymmetric Brillouin lines, derived
here from the Boltzmann equation for the thermal lat-
tice gas, are in complete agreement with the results of
the Landau-Placzek theory for continuous isotropic flu-
ids [1]. All further corrections to the Landau-Placzek
theory are at least of relative order O(k?) and would in-
volve higher order transport coefficients, such as Burnett
coefficients.

The well-known sum rule for the integrated intensity
in the Landau-Placzek theory follows from (3.19) as

/oo dw S(k,w) = 27 S (k). (3.20)

The same result can be derived by taking the limit as
k — O of the formulas (3.12) and (3.13), where one should
notice that the small & limit and the w integration in
(3.13) cannot be interchanged, because the w integral
does not converge uniformly near w = 0. Furthermore, it
is shown in Appendix B how the strength factors for the
line p = T and pu = 0 = =+ reduce to the Landau-Placzek
amplitudes (1 —y~!) and (27) 7!, respectively.

(3.19)

IV. EIGENVALUE SPECTRUM

In order to analyze the structure function S(k,w) and
to assess the limits of validity of the Landau-Placzek the-
ory both eigenvalues, z,(k) = Rez, (k) + :Imz,(k), and
eigenfunctions are required. A perturbative calculation
of these quantities at small k& can be carried out ana-
lytically and is summarized in Appendix A. Beyond the
small £ limit eigenvalues and eigenfunctions have been
analyzed numerically, following the method of [11].

At fixed wavelength and scattering angle k each eigen-
mode contributes according to (3.10) and (3.12) a spec-
tral line with a maximum located approximately [12] at
Imz, (k) and a width determined by Rez, (k). The eigen-
functions, on the other hand, enter in the weight factors
(p|¥){¢|p) in (3.10), and predominantly determine the
line shapes and the value at the maxima, as well as the
Landau-Placzek amplitudes.

In this section we focus on the structure of the eigen-
value spectrum, as obtained by numerical calculation per-
formed on the two-dimensional lattice gas [5] whose pre-
sentation is postponed to Sec. V. Indeed the analysis in
the present section does not require a detailed specifica-
tion of the model, as the results obtained here exhibit fea-
tures of sufficient generality. Furthermore these results
will be useful for the analysis of the dynamic structure
factor and related quantities discussed in Sec. V.

There are slow or hydrodynamic modes with
Rez,(k) ~ O(k?) as k—0, which may be propagating
with a sound speed Imz, (k)/k = ¢, (k), or may be purely
diffusive [Imz,(k) = 0]. The fast or kinetic modes with
Rez, (k) # 0 at k = 0 may become propagating at
nonzero k values. In the k interval (0, 1) of Fig. 1(a) one
observes that six pairs of kinetic modes become propa-
gating. The general features of these eigenvalue spectra
have been extensively discussed in [11,13].

As an illustration Figs. 1(a) and 1(b) show the real and
imaginary part of the eigenvalues for the two-dimensional
thermal lattice gas, to be discussed in Sec. V. At small
k values there are four hydrodynamic modes: two sound
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modes (u = 0 = %), a shear mode (1 =1), and a heat
mode (p = T') with diffusivities given in (3.14). In addi-
tion there are kinetic modes. The total number of modes
equals the number b of allowed velocity states (b = 19
in the model of Sec. V), and their values depend on the
details of the collision rules.

The eigenvalue spectra have a number of universal
features in common with continuous liquids and gases,
which are important in the analysis of the structure func-
tion. They are mainly determined by the ratio of the
mean free path, £, ~ 1/p, and the probing wavelength
A =27 /k, i.e., by the product k£,.

a. Hydrodynamic regime (kf, < 1). In this regime,
that corresponds to k < 0.6 [14] in Figs. 1(a), 1(b), and
1(c) (A 2 10), there is a clear separation between the
hydrodynamical eigenvalues and the kinetic ones. Fur-
thermore, the values z,(k) of the hydrodynamic modes
are given by (3.14) with macroscopic transport coeffi-

IReZ (k)|

IReZ, (K|

cients independent of the wave number k. In this regime
the hypothesis of the Landau-Placzek theory is satisfied:
long wavelength fluctuations decay essentially according
to the linearized macroscopic hydrodynamic equations;
there is a Brillouin doublet and a central Rayleigh line.
The Landau-Placzek theory gives a good approximation
to the Boltzmann structure function, as described by
(3.19).

b. Generalized hydrodynamic regime (kf, < 1). The
classical hydrodynamic description with constant trans-
port coefficients breaks down for & = 0.6, and the non-
local response of the system to spatial inhomogeneities
renders the transport coefficients k dependent. As k
increases, the separation between the macroscopic re-
laxation rates (3.14) [dashed lines in Fig. 1(a)] and
the exact ones increases. The latter ones may be de-
scribed in terms of generalized k-dependent transport co-

efficients: D, (k) = {v(k), I'(k), Dr(k)} with D, (k) =

3.0 (b)

2.0 +

ImZ, (k)|

0.0 0.5 1.0 1.5 2.0

|ImZ, (k)|

FIG. 1. (a) Real eigenvalue spectrum of the 19-bit LGA at high density: {p = 6.0, e = 6.7}. The dotted lines repre-
sent the hydrodynamic relaxation rates, see (3.14); (b) Imaginary eigenvalue spectrum of the 19-bit LGA at high density:
{p =6.0, e =6.7}; (c) Same as (a) for low density: {p = 1.1, e = 1.1}; (d) Same as (b) for low density: {p = 1.1, e = 1.1}. k
is given in 27 X (reciprocal lattice units); Rez, (k) and Imz, (k) are frequencies expressed in units of 27 X (reciprocal automaton

time steps).
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Rez,(k)/k?. Theresulting Dr(k) and I'(k) will be shown
in the figures of Sec. V E. Of course the speed of prop-
agation c,(k) is also showing some dispersion. However,
there still is a clear separation between hydrodynamic
and kinetic eigenvalues; so the contributions of the ki-
netic modes need not be considered when interpreting the
measured spectra. One can expect deviations between
the Landau-Placzek theory and the Boltzmann theory for
S(k,w). A superficial inspection of Fig. 1(a) shows that
the regime of generalized hydrodynamics corresponds to
the interval 0.6 < k < 1.25. However, closer inspec-
tion shows the following: for k parallel to a basis vector,
say 1, the matrix in (3.10) is invariant under the reflec-
tion ¢y <> —cy. Consequently the matrix in (3.9) can be
decomposed in two subspaces with even and odd parity
in ¢y. Therefore S(k,w) in (3.10) only couples to the
even subspace containing sound (¢ = ¢ = +) and heat
(¢ = T') modes. It does not couple to the shear mode (L)
with odd ¢, parity. Therefore, when considering S(k,w),
the regime of generalized hydrodynamics extends in Fig.
1(a) till about k£ ~ 1.5 or to a wavelength of four lattice
units.

To test the concepts of generalized hydrodynamics one
may substitute the k—dependent parameters c,(k), I'(k),
and D7 (k), (as obtained from the numerical evaluation of
the eigenvalues) into the Landau-Placzek formulas (3.19)
and compare this result from generalized hydrodynamics
with the Boltzmann prediction (3.10) (see discussion in
Sec. V). The latter does not involve any long wavelength
or slow mode approximations.

c. Kinetic regime (kf, 2 1). For large k values
(k > 1.5) one can no longer make a distinction between
fast and slow modes, as all decay rates are of the same
magnitude. All kinetic and hydrodynamic modes of even
¢y parity couple to the structure function and contribute
a spectral line, which has a Doppler shift if the mode is
propagating. In the kinetic regime it is physically mean-
ingless to parametrize the observed spectral lines in terms
of a central Rayleigh line and a Brillouin doublet, even
with k-dependent coefficients.

To illustrate the importance of the mean free path,
£, ~ 1/p, as the relevant length scale, we show in Figs.
1(c) and 1(d) the eigenvalue spectrum at low density
(p/pmax = 0.06) [Figs. 1(a) and 1(b) refer to the same
model at high density (p/pmax = 0.32)]. The regime of
classical hydrodynamics (k < 0.15 or A 2 42) is about
a factor of 6 smaller, and that of generalized hydrody-
namics about a factor of 8, as compared to Figs. 1(a)
and 1(b). For k 2 0.4 one observes the so-called Knud-
sen regime, where the collision matrix in (3.10) is only a
small perturbation on the propagation term [11].

V. POWER SPECTRUM
A. Thermal-lattice-gas model

The fluid model considered here is the two-dimensional
multispeed lattice gas introduced in [5]. It resides on a
triangular lattice where particles undergo displacements

from node to node with velocity moduli 1, v/3, and 2 (in
lattice units per time step); they have energy 1/2, 3/2,
and 2, respectively, and rest particles have zero energy.
Displacements are along any of the six lattice axes for
particles with velocities 1 and 2, and along any of the
six directions bisecting the lattice axes for particles with
velocity modulus v/3. Rest particles reside on the lat-
tice nodes. Particles obey the exclusion principle, i.e.,
each channel can be occupied by at most one particle.
There are 19 channels (6 + 6 + 6 + 1) per node and the
present lattice-gas automaton is referred to as the 19-bit
model [5] since the state of a node is coded by a 19-bit
word. Collisions are modeled by configurational changes
on each node compatible with conservation of particle
number p, momentum g, and energy e per node. After
collision, particles propagate to a new site of the lat-
tice according to their velocity vector, and the sequence
collision-propagation reiterates. Elementary configura-
tions that transfer energy during collision are illustrated
in Ref. [5]. The 19-bit model can be viewed as a multi-
level system where particles are redistributed after col-
lision amongst the energy levels by a nontrivial energy
conserving process; the redistribution is governed by a
symmetric matrix of transition probabilities such that
all transitions between input and output configurations
are equally probable within the class of states, defined by
the parameter set (p, g, e) of conserved quantities.

The two-step sequence, collision-propagation, is math-
ematically expressed by a set of microdynamical equa-
tions [4] from which the lattice Boltzmann equation (2.7)
can be obtained. In the LGA implementation, the mi-
croscopic evolution is operationally realized by the appli-
cation of the transition probability matrix followed by a
bit-shifting operation. All configurations are organized
into classes, specified by the parameter set (p, g, e); colli-
sions are performed by picking at random an output state
among all states in the same class as the input state. The
model is a detailed-balance model with symmetric tran-
sition rates.

B. Relevant parameters

We now examine the spontaneous density fluctuations
in the microscopic simulations and compare the simu-
lation results with the theoretical predictions of Secs. II
and III. The dynamic structure factor S(k,w) is obtained
by space and time Fourier transformation of the data
of the local density fluctuations ép(r,t). The analysis
treats S(k,w) as a spectral function, i.e., as a function
of w taken at fixed values of the wave number k& = |k|.
The measured spectra are smoothed (noise reduction) by
averaging over a sufficiently large number of spectra (typ-
ically 400) and by filtering out the high frequency oscil-
lations in w using the procedure described in [15].

The simulations are performed with the following spec-
ifications: (i) system sizes of 512x512 and 2048 time
steps; (ii) periodic boundary conditions; (iii) initializa-
tion with zero total momentum, i.e., the system is at
rest; (iv) measurements are performed after the system
has reached equilibrium.
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TABLE I. Range of thermodynamic parameters and wave
vectors for the simulations.

Density range: p = [1.27,9.5]

Energy range:
Wave number range:

e = [1.13,12.0]
k = k1., k = [0.049,1.94]

k = k1,, k = [0.085,1.11]

Correlations of fluctuations are measured at various
thermodynamic parameters and at several wave numbers,
as summarized in Table I. The thermodynamic state is
specified by the number of particles p = )", f;, and the
energy e = »..&;f;, which are set by the fugacity z =
exp(—a) and the reduced temperature 8 = exp(—03/2)
on account of (2.3). For the simulations discussed in this
paper the thermodynamic parameters are chosen as

z2=0.8, =08 — p=6.0, e =6.7 (high density)
(5.1)
z=0.1,6=08 — p=1.1, e=1.1 (low density).

In the simulations the wave vector k is oriented either
along the horizontal = direction or along the vertical y
direction with k = k1., k;, = 2wk*/L = k*ko, and k =
kyly, ky = 7r\/§k*/L, respectively. Here k* is an integer
and L is the linear size of the lattice, i.e., the number
of nodes along the  and y direction (in our simulations
L = 512).

We will compare the results of numerical simulations
with the Boltzmann expression for S(k,w) in (2.11) and
(3.10), obtained by numerical evaluation. For small k
we will also use the Landau-Placzek expression (3.19)
with the thermodynamic quantities v and ¢; computed
from (3.18) and (A5), and the Boltzmann transport co-
efficients v and D7, computed from (A11).

The accuracy on the linewidth measurement is set by
the frequency resolution Aw = 2n /Ty (where Tp is the
total simulation time; here T, = 2048) and so it de-
creases with the width of the spectral lines, i.e., when
k decreases. Therefore we set a practical lower limit at
k = 4ko ~ 0.05 (which corresponds to a wavelength of
130 lattice units).

C. High density

Spectra S(k,w) obtained at small wave numbers
are characteristic of the hydrodynamic behavior at
long wavelengths. A typical example at high density
(p/Pmax = 0.36) is shown in Fig. 2(a), where k = 12kq =~
0.15, corresponding to a wavelength A ~ 42 . According
to the discussion of Sec. IV [see Fig. 1(a)] this is well
inside the hydrodynamic regime where the predictions
of the Boltzmann theory (2.12) and the Landau-Placzek
theory (3.19) coincide. The dynamical structure factor
exhibits the typical line shapes of the Rayleigh-Brillouin
spectrum in real fluids [6]. It consists of a Brillouin dou-
blet, located at w = +¢,4k, and a Rayleigh line centered at
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w = 0 (for models without conserved energy, the Rayleigh
line is absent). In the small k¥ domain the spectral den-
sity of lattice-gas fluctuations is very well reproduced by
the Landau-Placzek theory (3.19) except in the height of
the Brillouin peaks, as can be seen in Fig. 2(a). This is
probably due to the poor resolution at small k values of
the peaks where fluctuations in the simulation data are
most pronounced.

When the value of the wave number increases, the
Landau-Placzek theory progressively fails to reproduce
the measured spectra, since linearized hydrodynamics
with constant transport coefficients becomes invalid at
short wavelengths. At k& = 50kg ~ 0.6 one enters the
regime of generalized hydrodynamics where the simula-
tion data are in excellent agreement with the Boltzmann
theory (except for the peak values).

When £ increases further, the deviations from classical
hydrodynamics become larger. This is clearly exempli-
fied in Fig. 2(b), which shows a comparison between the
measured and computed dynamical structure factors at
k = 136k¢ ~ 1.67. The figure shows that the Boltzmann
prediction remains valid down to quite short wavelengths
(here A ~ 4). The relevant k value lies on the border
between kinetic and generalized hydrodynamic regimes,
as can be seen from Fig. 1(a). Therefore the Landau-
Placzek predictions with constant transport coefficients
are expected to fail completely; however, when combined
with the k& dependent sound speed and transport coeffi-
cients, calculated from the eigenvalue spectrum, consider-
able improvement is obtained. The spurious oscillations
in the simulated S(k,w) are effects of the smoothing pro-
cedure applied to the noisy data [16].

D. Low density

Similar conclusions can be drawn from the spectral
analysis of the lattice-gas simulations at different den-
sities with the observation that at low density, the range
of validity in k& of the different approximations is nar-
rower, as can be inferred from the discussion in Sec. IV.
We illustrate these effects in Figs. 2(c) and 2(d) with
two fluctuation spectra at low density (p/pmax = 0.067).
Figure 2(c) refers to a k value (k = 12ko ~ 0.15) on
the border between classical and generalized hydrody-
namics [see Figs. 1(c) and 1(d)]. Here the Landau-
Placzek and Boltzmann predictions are in good agree-
ment with the simulations. Figure 2(d) refers to a k
value (k = 52kg ~ 0.64) far inside the kinetic regime, in
the so-called Knudsen regime (see [11]). The simulation
data are very noisy and it is difficult here to separate spu-
rious oscillations from the kinetic spectral lines. In this
almost collisionless regime correlation effects through the
periodic boundary conditions might be quite substantial.
The Boltzmann theory follows more or less the general
trends. Inspection of the eigenvalue spectrum in Figs.
1(c) and 1(d) at k ~ 0.64 and a numerical analysis of
the eigenfunctions show that S(k,w) is strongly coupled
to the six modes with Rez,(k) ~ 1.7, four of which are
propagating. In the “Brillouin lines” of Fig. 2(d) the
outer peaks are a superposition of two different lines and
the inner ones of three.
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E. Shifts and widths

A more quantitatively significant analysis of these ef-
fects is feasible if the measured structure functions can
be suitably parametrized in terms of a few physically rel-
evant parameters, which can be compared with the cor-
responding theoretical predictions. Such a parametriza-
tion is provided by the Landau-Placzek formula (3.19).
It contains four adjustable parameters c,,~y, D7, and T.
For a given k value the Landau-Placzek expression (3.19)
is fitted to the simulation data using a x2 fit and yields
k-dependent values for ¢,(k),v(k), Dr(k), and I'(k), as
shown in Fig. 3.
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These results can be compared directly with the k-
dependent speed of sound and transport coefficients, cal-
culated in Sec. IV from the eigenvalues of the Boltzmann
equation. In the same spirit a k-dependent Landau-
Placzek ratio (k) can be introduced with the help of
the k-dependent strength factors on the right-hand side
of (3.12).

We first discuss [see Fig. 3(a)] the measured Doppler
shifts w,(k) of the Brillouin lines (black dots) and com-
pare them with the shift Imzy (k) = +c,(k)k computed
from the Boltzmann equation (dashed-dotted line). The
thermodynamic speed of sound ¢, ~ 1.26 (dotted line)
is calculated from (A5) using high density parameters in
(5.1). The measured dispersion in the sound speed (black

2.0

(b)

S(k,0)/S(k)

S(k,0)/S(K)

FIG. 2. The dynamic structure factor S(k,w) as a function of the frequency w for the 19-bit lattice-gas automaton. Com-
parison between simulation results (solid line) and theoretical computations: Landau-Placzek theory, Eq. (3.19) (dashed curve)
and Boltzmann theory, Eq. (2.12) (dotted curve). Thermodynamic state: p = 6.0; e = 6.7 [(a), (b)]; p = 1.1; e = 1.1 [(c), (d)].
Lattice universe: L x L = (512)%. w is expressed in units of 2mw/To, where Tp is the total number of time steps (To = 2048);
S(k,w)/S(k) is expressed in reciprocal w units; k = k1., kK = 12ko ~ 0.15 (a), k = 136ko ~ 1.67 (b), k = 12ko =~ 0.15 (c),
k = 52ko ~ 0.64 (d).
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dots) is remarkably well accounted for up to k ~ 1.5 by
the Boltzmann theory for c,(k) (dashed-dotted line), con-
firming the validity of generalized hydrodynamics. We
recall that the wave number k& ~ 1.5 in Fig. 1(a) sepa-
rates the generalized hydrodynamic and kinetic regimes.
In the kinetic regime the parametrization (3.19) has lost
all physical meaning.

It is also possible to test certain aspects of the theory,
such as the location of the Brillouin peaks, independent
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FIG. 3. Dispersion in thermal-lattice-gas automata.
(19-bit model: thermodynamic state: p = 6.0, e = 6.7;
k = k1.). Comparison between simulation results and the-
oretical predictions. (a) k dependence of the speed of sound
cs and Brillouin shift/k (= w,/k): simulation data for c,
(black dots) and ws/k (open circles) compared to w,/k ob-
tained from the Boltzmann spectrum, Eq. (2.12) (solid line)
and from Landau-Placzek theory, Eq. (3.19) (dashed line),
and to the Boltzmann eigenvalue |Imz,(k)|/k (dashed-dotted
curve); the horizontal dotted line corresponding to the clas-
sical (k — 0) value ¢, = 1.26 is shown for reference. (b)
Linewidth of the simulation spectra vs k? compared to the
Boltzmann theory predictions (solid lines). w is expressed
in units of 27 /T, (see caption of Fig. 2); (sound speed) x k,
Brillouin shift and linewidths have dimension of frequency
and are expressed in units of w. Here I'k? (open circles) refer
to Brillouin lines, and Drk? (black dots) to the Rayleigh line.
The dashed straight line corresponding to the classical value
|Rez(k — 0)| = 0.3k? (see text) is shown for reference.

of a parametrization. The open circles correspond to the
Brillouin shift, i.e., the w values where the simulation
data reach their maximum. The statistical scatter in
these data is necessarily much larger than in the param-
eter procedure (black dots). The solid line shows the w
values where the Boltzmann prediction for the Brillouin
lines reaches its maximum. There is good agreement al-
though the statistical scatter is large.

Next we analyze the linewidths obtained from the sim-
ulation data through the Landau-Placzek parametriza-
tion (3.19). The simulation data for the heat diffusivity
Dr (k) (black dots) and sound attenuation I'(k) (open
circles) are shown in Fig. 3(b) as functions of k2. In the
long-wavelength limit the Landau-Placzek theory pre-
dicts three Lorentzians of width Drk? and I'k? (two co-
inciding dashed lines), where D ~ 0.302 and T" ~ 0.297
are given by the Boltzmann transport coefficients in the
limit £ — 0, derived in (A11) of Appendix A. The ob-
served dispersion in the heat diffusivity is in good agree-
ment with the value Dr(k), calculated from the Boltz-
mann eigenvalue (upper solid line) throughout the com-
plete regime of generalized hydrodynamics (k < 1.5).
However, the observed dispersion in the sound attenu-
ation deviates from the Boltzmann prediction for I'(k)
(bifurcating solid line) in the whole regime of generalized
hydrodynamics (k 2 0.6). Note further that the measure-
ments of peak position and linewidth are very sensitive
to “experimental” noise in the spectra, especially at large
k values, where one finds a wider scatter in the data [see
Figs. 3(a) and 3(b)].

The Landau-Placzek ratio, i.e., the ratio of the inte-
grated intensity of the central Rayleigh line to those of
the Brillouin lines is given by (y — 1), as can be easily
checked from (3.19). This result was verified to hold in
the regime of classical hydrodynamics, i.e., & < 0.6 for
the high-density gas and & < 0.15 for the low-density gas:
the measured value ~yg;m ~ 1.34 is in good agreement with
the theoretical value v = 1.32, calculated from (A15).
In the regime of generalized hydrodynamics the Landau-
Placzek ratio y becomes k dependent. We have calcu-
lated the k-dependent strength factors for the relative
intensities of the integrated spectral lines, using (3.12).
However, a comparison of these theoretical predictions
with the corresponding values computed from the mea-
sured spectra is precluded by the difficulty of evaluating
the integrated intensities of the spectral peaks in a quan-
titative manner.

VI. CONCLUDING COMMENTS

We have presented a theoretical analysis and micro-
scopic simulations of a thermal 19-bit lattice-gas automa-
ton exhibiting spontaneous thermohydrodynamic fuctu-
ations. The theoretical analysis presented here is based
on the lattice Boltzmann equation, in which space and
time variables are discrete. It is a mean-field theory that
neglects dynamic correlations between particles (such as
ring collisions [10]). Within this theory the dynamic
structure function S(k,w) has been calculated exactly
by numerically inverting a 19-dimensional matrix related
to the collision matrix.



48 STATISTICAL HYDRODYNAMICS OF LATTICE-GAS AUTOMATA

In the coupled limit of long wavelengths and small
frequencies the Landau-Placzek theory is obtained an-
alytically as the O(k) and O(k?) contributions in an
asymptotic expansion. The power spectrum contains
O(k) terms representing the Doppler shifts, and O(k?)
terms representing the linewidths and the asymmetry
of the Brillouin lines. The coefficients are found as k-
independent thermodynamic parameters (speed of sound
and Landau-Placzek ratio ) and Boltzmann transport
coeflicients (sound damping constant and heat diffusiv-
ity). The asymptotic Landau-Placzek theory agrees with
the simulations in the regime of classical hydrodynam-
ics (no dispersion in speed of sound and transport co-
efficients), i.e., for wavelengths A 2 10 lattice units at
high density (p/pmax = 0.36) or A 2 42 lattice units at
low density (p/pmax = 0.06). The predictions of the lat-
tice Boltzmann equation in which no small ¥ and/or w
approximations have been made, are valid over a wider
range of wave numbers.

The fitting procedure used here to extract the Navier-
Stokes transport coefficients from the linewidths does not
have sufficient accuracy to interpret any deviations from
the Boltzmann values as effects due to finite size, ring
collisions, etc.

Spectral analysis shows that the dynamic structure fac-
tor is compatible with the scattering function observed in
real fluids. At small (classical hydrodynamics, k€, < 1)
and intermediate (generalized hydrodynamics, k¢, < 1)
wave numbers the simulation results for the dynamic
structure factor S(k,w) are well parametrized by the
Landau-Placzek formula (3.19). Nonhydrodynamic be-
havior at short wavelengths is quantified by sound disper-
sion and wave-number-dependent transport coefficients;
such effects are semiquantitatively accounted for by the
Boltzmann equation. In the kinetic regime (k¢, > 1) the
Landau-Placzek parametrization of the structure func-
tion loses physical meaning.

There are low-k and high-k limits to the wave number
domain (see Table I) where the lattice-gas method is ap-
plicable. Obviously a high-k limit value follows from the
lattice mesh. On the other hand, since the macroscopic
volume of the lattice gas is finite (here with periodic
boundary conditions) the lowest k value is set in principle
by the reciprocal of the linear size of the lattice; however,
a practical limit follows from the frequency resolution as
discussed in Sec. V B. We have shown that within these
limits, the lattice-gas automaton can be considered as a
valuable statistical-mechanical model for linearized (clas-
sical or generalized) hydrodynamics.
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APPENDIX A

The hydrodynamic modes of the kinetic equation (3.1)
for athermal LGA’s are discussed in [8,13]. Here we de-
scribe the extension to thermal models, starting from the
eigenvalue equation

[exw0r+iee — 1 — Q] |, (K)) = 0. (A1)

In the long-wavelength limit the hydrodynamic modes
(k) and eigenvalues z,(k) can be determined by a
Taylor-series expansion,

Pu(k) = 1/)’(10) + ik1/’f,1) + (ik)zz/Jl(f) +oeeny
(A2)
() = ik + (KD 4

Substitution of (A2) into (A1) gives the set of equations

Q|¢L°)) =0,
Q1) = (e + 2 [p), (A3)
Q@) = (cr + 2 YM) + [22) + L(er + 2)2] 19Oy,

with ¢ = k- c(ﬁ = 1). The general solution of the
zeroth order equation is an arbitrary linear combination
of the collisional invariants (3.4),

[¥{") = Bulan)

= Br|s) + Bp|p) + Bi|c;) + BLi|cL). (A4)

Here ¢, = k - c and c, = EL - ¢ are the longitudi-
nal and transverse components of the microscopic mo-
mentum g(c) = c. The microscopic entropy, s(c) =
e(c) — hp(c) = 3c® — c2, and the microscopic pressure,
p(e) = %cz, are linear combinations of the collisional in-
variants p(c) = 1 and e(c) = 3¢ in (3.4). The constant h
is chosen such that the microscopic pressure and entropy
are orthogonal, i.e., (s|p) = 0; so

2 _ (plp) _ > kich ]
“= o) T 2y
We have introduced ¢, which will appear to be the “adi-
abatic” speed of sound. The coefficients B,, in (A4) and

eigenvalues z,(}) can be determined by multiplying the
second equation in (A3) to the left with (a,,|. This yields

Y (amle + 20 an) Bn = 0,

h

I

(A5)

C

(A6)
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with n,m = {T,p,l, L}. This matrix is diagonal in the
labels T and L, yielding zé}) = zil) = 0. In the {p,!}
subspace we find

211 2
(zD)2 = (plet))” _ 2 (A7)
(plp)(ciler)
where we have used (A5) and the relations (p|c?) = (p|p)
and (ci|e;) = (p|p). The eigenvalues to first order, zf} ,
the hydrodynamic modes to zeroth order, 1[),(?), and the

currents j, = (¢ + z,(tl))zbflo) are then

Z<(71) = —O0Cg, ’(,[),(70) =p + 0CsCly jo’ - jT + OCsTre,
1) _ g o) _ . . S _

z) =05 1 =cL; J1L = Tey = CiC1,

zé}) =0 59) = s; jT = cs.

(A8)

Here T labels the heat mode, L the transverse momen-
tum or shear mode, and 0 = + the two sound modes,
|

L
Q2

11
Q2

zxg-Z) =I= "‘<jT + CsTaa Q

To further simplify the expression for I' we use the rela-
tion

WP W) = 20plp) = 2 erler) = 265 (plo),

as can be derived from (A5), (A7), and (A8). Further-
more, on a lattice with triangular symmetry a fourth rank
tensor is isotropic, yielding the equalities

1 1

=+

vicilel) = —<7'zy gt 3 T$y>
=+

< ; : >
= —\ Tzz 5| Tex )

(A12)

ats (A13)

Combination of the above results provides an expression
for the sound damping constant in terms of the viscosity
v and the heat diffusivity D7,

r=1, 188 1,10 1)D,. Al4
2 F 0T = 3 a0 Db ()
For lattice gases the ratio «y is given by
(sls) _ (plp)(plp)
! (plp) (plp)?
_Ele) _ & "
(plo) <%

1
4=
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and 7o = 3(cf — c}).
The second equation of (A3) then has the solution

) = 2li) + 30 Bk, (49)

The first term on the right-hand side belongs to the or-
thogonal complement of the null space of 2. The coeffi-
cients B, remain undetermined. By inserting (A9) into
the third equation of (A3) and multiplying it on the left

by (¢§0)| (with A =T, L and o), we obtain

0=">" Bu (e + 20w

1
+<1/)§°) (cr+20) 5

(e + z‘(})) ¢‘(L0)>

+(@W012® + (e + 22 p?). (A10)

For A\ = p the first term on the right vanishes and we
obtain the eigenvalues to second order,

le> / (sls),

Tmy>/(CL|CL>v

1. (0)1(0)
JT+CST1:11>/<1/JU '1/]0 )

(A11)

[
These fluctuation formulas are most easily derived by
writing s = p — p{p|p)/(p|p) and introducing the isother-
mal speed of sound c7 through the relation

(plo) _ (9p/da)s _ (9p\ _
(plp) ~ (Op/Bca)s (ap)ﬁ =cr (A16)

where thermodynamic derivatives are obtained through

(2.3) and (2.5). The first line in (A15) shows that v > 1.
Next we determine the coefficient B, in (A9) by using

(A11) for p # v. After some rearrangements we obtain

L1
2

B (W13 () — 23) = —<jA =

ju>' (A17)

With the help of the above equalities we calculate the
nonvanishing coefficients, i.e.,

B, _,=(v—T)/[20¢],
Bo’,T = ""DT/[UCSL
BT,o— = (’y — l)DT/[20'CS].

(A18)

The coeflicients B, (¢ = T, 0, L) remain undetermined,
but they do not appear in any of the final results. We
note here that the expressions (A9) for the hydrodynamic

modes to O(k?) given in [17] are incomplete, as they do

)

not contain the terms B”,ﬂ/J,(,O . However, these terms
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do not affect the explicit expressions for the transport
coefficients derived in Refs. [7,17]. Here they follow by
consistency and they determine the asymmetrical parts
of the Brillouin lines in the dynamic scattering function
S(k,w), in Eq. (3.19).

In summary, starting from the lattice Boltzmann equa-
tion, we solve the eigenvalue equation (A1) to obtain
explicit expressions for the hydrodynamic modes, the
thermal diffusivity D7, the kinematic viscosity v, and
the sound damping constant I' = 1v + 1(y—1)Dr in
(A11). The general formulas for the transport coeffi-
cients are in agreement with the results of Refs. [7,17].
In the 19-bit model, studied in this paper, the micro-
scopic heat and the momentum flux do not correspond
to a single eigenvector of the collision operator €2, as is the
case in the FHP (Frisch-Hasslacher-Pomeau) models, 8-
and 9-bit square LGA, and 24-bit FCHC (face-centered-
hypercube) model [4]. In thermal models, where particles
possess only kinetic energy, the bulk viscosity vanishes
identically [7]. The transport coefficients are expressed
as matrix elements, defined in (3.3), of the inverse Boltz-
mann collision operator 2, sandwiched between micro-
scopic fluxes, j,, as given in (All). The transport co-
efficients depend through €Q;; and «; in (3.3) on density
and temperature. The transport coeflicients v and Dr
as well as the thermodynamic quantities ¢, and v can be
evaluated numerically from (A1ll), (A7), and (A15) for
a given density p and temperature 3, once the collision
rules or the transition probabilities are specified.

APPENDIX B

To calculate the coefficient N, defined in (3.17), we
insert (3.7) for the left eigenfunction ¢, and perform the
expansion ¢, = 1/),(?) +ik1/),(tl) +- - -, as derived in Appendix
A. The result to linear order in k is

_ el {1 ik PI) o (B 10)
TP U e )
. (0)) D)
ik d2 ”/Zm)_ Bl (o! d:o)> e B
Wl w1
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Consider first the case p = 0. With the help of (A8),
(A12), and (A15), the term of O(k®) yields

_ {plp)? _ (plo)
77 20plp) 2y (B2)

To evaluate the terms of O(k) we use the explicit form
for 1/)5,0) in (A8), and the identities in (A12). One verifies
that the two terms on the second line on (B1) cancel; the
remaining terms of order O(k) are combined to yield

{plp) (_k O )
2y ((plp>) (2e, o)
_ k{plp), (0 MGG
" 2y (plp) W= o)
- g<p|p>{wa,_u —2(y = 1)Bor (B3)

To go from the second line to the third one we have used
(A9), noting that the term involving the inverse collision
operator is orthogonal to all 1/),(?). Finally substitution of
the values of the coefficients B, in (A18) yields N, as
given in (3.17).

Next we consider u =
term yields

_(pls)? _ (y—1
Nr =G (

where we have used (3.17), (A8), (A15), and the relation
(p|s) = —(s|s)/c2. The terms on the second line of (B1)
vanish because of parity, and the remaining O(k) terms
contain the inner product (p|1/)£,11 )

T in (B1). The zeroth order

) ol (B4)

). This expression van-

ishes because the component of 1/1;1 )
of Q can be written as

lpg) = ZBTaI¢(°’> = (Dr/cs)(y = 1)|er).

in the null subspace

(B5)

For the shear mode [p =1 in (B1)] one finds N, = 0
because of parity.
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